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Abstract—In this paper, we tackle the problem of pose-guided person image generation with unpaired data, which is a challenging

problem due to non-rigid spatial deformation. Instead of learning a fixed mapping directly between human bodies as previous methods,

we propose a new pathway to decompose a single fixed mapping into two subtasks, namely, semantic parsing transformation and

appearance generation. First, to simplify the learning for non-rigid deformation, a semantic generative network is developed to

transform semantic parsing maps between different poses. Second, guided by semantic parsing maps, we render the foreground and

background image, respectively. A foreground generative network learns to synthesize semantic-aware textures, and another

background generative network learns to predict missing background regions caused by pose changes. Third, we enable pseudo-label

training with unpaired data, and demonstrate that end-to-end training of the overall network further refines the semantic map prediction

and final results accordingly. Moreover, our method is generalizable to other person image generation tasks defined on semantic maps,

e.g., clothing texture transfer, controlled image manipulation, and virtual try-on. Experimental results on DeepFashion and Market-1501

datasets demonstrate the superiority of our method, especially in keeping better body shapes and clothing attributes, as well as

rendering structure-coherent backgrounds.

Index Terms—Image generation, semantic parsing transformation, appearance generation, fashion application

Ç

1 INTRODUCTION

TRANSFERRING a person image from one pose to another,
which refers to pose-guided image generation in [1], has

attracted great attention in recent years. The goal of this
task is to change the pose of the person to a target one while
keeping the appearance details at the same time. It is of
great value in some fundamental computer vision tasks
such as person re-identification and image/video manipu-
lation. It also can be widely applied in art and fashion
domains, benefiting applications such as on-demand movie
production and fashion design.

The recent advent of deep learning and generative mod-
els [2] has provided powerful tools to achieve pose-guided
image generation, and inspired many researchers in this
area [1], [3], [4], [5], [6], [7], [8]. This problem is initially
explored under a fully supervised setting [1], [5], [6], [7].
Though promising results have been presented, these meth-
ods require paired images (i.e., the same person in the same
clothing but in different poses) in their training process. In
order to address the data limitation and achieve more flexible
generation, more recent works in this area focus on learning
the mapping with unpaired data [3], [4], [8]. However,

without supervision from ground truth images, the generated
results from [3] are far from satisfactory due to the complexity
in simultaneously modeling spatial and appearance transfor-
mations. Several works disentangle images into multiple
factors, e.g., background and foreground [8], shape and
appearance [4], [9], but ignoring non-rigid human-bodydefor-
mations and clothing shapes can result in compromised
quality of generated images. Another limitation of previous
unpaired pose-guided image generation methods is that
given a condition image, they mainly focus on rendering
appearance-consistent foreground, without taking backgro-
und synthesis into account. Therefore, the backgrounds in the
generated results are less faithful to the condition images.

Therefore, the key challenges of this task with unpaired
data are in the following aspects: (1) Due to the non-rigid
nature of a human body, it is generally difficult to transform
the spatially misaligned body-parts for convolution-based
networks. (2) Clothing attributes, e.g., clothing types and tex-
tures, are difficult to preserve in the process of generation.
However, these clothing attributes are important for human
visual perception. (3) Pose changes would lead to missing
regions in the background inherited from the condition
image. It is troublesome to generate contextually-relevant
background and stitch seamlessly with the foreground. (4)
The lack of paired training data provides little clue in estab-
lishing effective training objectives.

In this paper, we seek a new pathway to address the
above challenges. Rather than transforming the person
image directly, we propose to introduce human semantic
parsing as a bridge in the transformation. On one hand,
translating between semantic parsing and person image (in

� S. Song, J. Liu, and Z. Guo are with the Wangxuan Institute of Computer
Technology, Peking University, Beijing 100871, China.
E-mail: {ssj940920, liujiaying, guozongming}@pku.edu.cn.

� W. Zhang and T. Mei are with the JD AI Research, Beijing 100105, China.
E-mail: wzhang.cu@gmail.com, tmei@live.com.

Manuscript received 30 Aug. 2019; revised 16 Mar. 2020; accepted 25 Apr. 2020.
Date of publication 4 May 2020; date of current version 1 Oct. 2021.
(Corresponding author: Jiaying Liu.)
Recommended for acceptance by L. Sigal.
Digital Object Identifier no. 10.1109/TPAMI.2020.2992105

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 11, NOVEMBER 2021 4161

0162-8828 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 14:33:00 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2085-6370
https://orcid.org/0000-0002-2085-6370
https://orcid.org/0000-0002-2085-6370
https://orcid.org/0000-0002-2085-6370
https://orcid.org/0000-0002-2085-6370
https://orcid.org/0000-0002-0468-9576
https://orcid.org/0000-0002-0468-9576
https://orcid.org/0000-0002-0468-9576
https://orcid.org/0000-0002-0468-9576
https://orcid.org/0000-0002-0468-9576
https://orcid.org/0000-0002-4944-9621
https://orcid.org/0000-0002-4944-9621
https://orcid.org/0000-0002-4944-9621
https://orcid.org/0000-0002-4944-9621
https://orcid.org/0000-0002-4944-9621
https://orcid.org/0000-0003-2497-7732
https://orcid.org/0000-0003-2497-7732
https://orcid.org/0000-0003-2497-7732
https://orcid.org/0000-0003-2497-7732
https://orcid.org/0000-0003-2497-7732
mailto:ssj940920@pku.edu.cn
mailto:liujiaying@pku.edu.cn
mailto:guozongming@pku.edu.cn
mailto:wzhang.cu@gmail.com
mailto:tmei@live.com


both directions) has been extensively studied, where sophis-
ticated tools [10], [11] are available. On the other hand, spa-
tial deformation can be well handled by semantic parsing
transformation, which is a much easier problem because the
network does not need care about appearance information.
Besides, semantic parsing naturally provides a foreground
mask, which is important for seamlessly stitching the fore-
ground and background in pose-guided image generation.

Specifically, our proposedmodel for person image genera-
tion with unpaired data comprises two modules: semantic
parsing transformation and appearance generation. Semantic
parsing transformation aims to transform semantic parsing
between input and target poses with a semantic generative
network. Based on the transformed semantic parsing, appear-
ance generation module is designed to generate the fore-
ground and background for the final output, respectively. A
foreground generative network is proposed to synthesize
semantic-aware textures on the transformed parsing. And a
background generative network is developed to predict miss-
ing background regions caused by pose changes, so that
structurally-coherent background can be rendered according
to the condition image. Without paired supervision, training
the proposed network is intractable as different modules are
highly coupled with each other. Therefore, we are motivated
to seek a divide-and-conquer training strategy. Each part of
the network is first independently trained and then jointly
optimized with each other. For semantic parsing transforma-
tion, we create pseudo labels to guide the network training.
For appearance generation, we adopt cycle consistency to
overcome the absence of ground truth images. In addition,
we propose a semantic-aware style loss, encouraging the
foreground generative network to build a mapping between
corresponding semantic regions, thus clothing attributes can
bewell-preserved by rich semantic parsing. In order to gener-
ate natural and coherent background, we train the back-
ground generative networkwith auxiliary images, and use an
iterative optimization procedure to adapt both auxiliary and
original images.

Moreover, we are inspired to apply the appearance gen-
erative network on conditional image generation tasks,
thanks to the mapping between corresponding semantic
regions. Guided by the semantic map, we can transfer cloth-
ing textures of two person images, or control the image gen-
eration by editing the semantic map manually. Meanwhile,
we are able to apply our model on virtual try-on, fitting
new clothes or styled textures to the target person.

We summarize our main contributions as follows:

� To address the challenging problem of person image
generation with unpaired data, we propose to
decompose it into two subtasks, namely, semantic
parsing transformation (HS) and appearance genera-
tion (HA).

� A delicate training schema is designed to carefully
optimize HS and HA in a divide-and-conquer man-
ner. We enable a pseudo-label training process with
unpaired data, and demonstrate that end-to-end
training of the network enables better semantic map
prediction, and then helps improve the final results.

� For appearance generation, we consider generating
foreground and background separately. We develop

a background generative network to predict the
missing background regions caused by pose changes
and generate realistic-looking outputs.

� Our model is superior in keeping clothing attributes,
rendering better body shape, and retaining a coher-
ent background from the condition image. It is also
generalizable to other conditional image generation
applications, including clothing texture transfer, con-
trolled image manipulation, and virtual try-on.

A preliminary version of our work has been presented
in [12]. In this journal article, our work is improved from
the following aspects: (1) We improve the proposed person
image generation method by taking background generation
into account. We aim to inherit the background information
from the condition image in the final output, which is over-
looked by the previous methods [1], [3], [4], [5], [8]. (2) We
provide more details of our proposed method and present
more extensive analysis of our model. We elaborate on the
effectiveness of each component in semantic parsing trans-
formation and appearance generation, including the impact
of person representation and different loss function terms,
as well as the effect of various background generation
schemes. (3) We explore another application scenario of vir-
tual try-on, to further inspire the fashion community. It is
worth noting that our model not only fits new clothes but
also transfers texture styles on the target person.

The paper is structured as follows. In Section 2, we dis-
cuss related work on image generation. In Section 3, we
introduce the proposed model for person image generation
with unpaired data. Subsequently, we present our experi-
ments and extensive analysis on two datasets (i.e., DeepFa-
shion [13], Market-1501 [14]) in Section 4. The concluding
remarks are given in Section 5.

2 RELATED WORK

2.1 Image Generation

The generative models, such as variational autoencoders
(VAEs) [15], [16] and generative adversarial networks
(GANs) [2], have been significantly improved in the past
few years. Their ability in synthesizing realistic-looking and
natural images has led the progress in image generation
[17], [18], [19], [20], [21], [22]. VAE-based methods learn the
mappings between domains by optimizing negative log-
likelihood of the training data [21], [23], [24]. They are easy
to train but usually produce very blurry images that lack
details. GANs, on the other hand, optimize a min-max
objective with a generator and a discriminator. Though fac-
ing challenges in training stability, GANs tend to generate
more realistic images with sharper edges, and many efforts
have been made to effectively enable a stable training pro-
cess [25], [26], [27]. Therefore, GAN-based image generation
also attracts much attention.

For GAN-based image generation methods, there are
mainly two branches: supervisedmethods and unsupervised
methods. With paired training data in the supervised setting,
pix2pix [10] achieves image to image translation, which is
essentially a domain transfer problem, by building a condi-
tional GAN. More recent efforts [17], [18] have been dedi-
cated to generating photo-realistic images in high-resolution
by generating multi-scale images progressively. For the
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unsupervised setting, the works in [28], [29], [30] employ
reconstruction consistency to learn cross-domain mapping.
However, the development and application of these unsuper-
vised methods are mainly for appearance generation in spa-
tially aligned tasks. With unpaired training data, we aim to
learn a mapping to simultaneously deal with spatial non-
rigid deformation and appearance generation.

2.2 Pose-Guided Person Image Generation

For the problem of pose-guided person image generation,
the two-stage network PG2 [1] is one of the early attempts. It
first coarsely generates an output under the target pose, and
then refines the result with finer details. To better model
appearance and shape, Siarohin et al. [5] proposed to trans-
form high-level features for each body part with deformable
skips. The similar idea is also adopted by [7], [31], in which
segmentationmasks of body parts are employed to guide the
image generation. Amore recent work [32] builds correspon-
dence between the source and target images by texture coor-
dinate estimation and inpainting. However, the models
in [1], [5], [7], [32] are trained using paired data.

To overcome the limitation, the work in [3] presents a
fully unsupervised GAN based on [28], [33]. Dominik et al.
[9] proposed an approach with a two-stream auto-encoder
for unsupervised learning of shape and appearance. Other
works [4], [8] tackle the problem with unpaired data by
modeling data distribution and sampling from feature
spaces. Generated from highly-compressed features, the
results of these methods are less consistent with the appear-
ance of condition images. Instead, we leverage semantic
information as guidance in body shape generation and tex-
ture synthesis for the final output.

In most of the previous pose-guided image generation
methods [1], [3], [4], [5], [8], background generation is
always overlooked. However, changing the human pose of
the input image while maintaining the background is
crucial in generating temporally coherent videos. While
both [6] and [7] employ an additional module to generate
images conditioned upon the backgrounds from the input
images, they learn to render the missing regions caused by
pose changes with supervision from ground truth images.
In our work, we propose a model to synthesize coherent

background images with unpaired data, which is more chal-
lenging for the model to infer context-aware textures.

2.3 Semantic Parsing for Image Generation

Semantic maps provide valuable prior for image generation.
Starting from the pixel-wise semantic map, pix2pix [10]
made a breakthrough in structure-conditional image transla-
tion. Then semantic maps are widely employed in visual
manipulation [34], [35], which allows semantic control over
the process in image generation. Besides, semantic maps can
also serve as an intermediate representation between condi-
tional inputs and output images. The condition inputs can be
texts [36], scene graphs [37] or human skeletons [38]. These
works first infer the semantic maps, and then generate an
image with an image generator. The results in [36], [37] show
the effectiveness of predicting scene layout (semantic map)
for text-to-image translation. It is illustrated that by condi-
tioning on estimated layouts or semantic maps, more seman-
tically meaningful images can be generated. More recent
works in [38], [39], [40] apply the idea in person image gener-
ation by inferring human parsing, and benefit from semantic
information of human body structures. However, thesemod-
els have to be trained with ground truth supervision to pre-
dict scene layouts or semantic maps. In contrast, our model
learns semantic map prediction with unpaired data. We fur-
ther demonstrate that the prediction for the semantic map
can be improvedwith end-to-end training.

3 THE PROPOSED METHOD

Given a target pose pt and a condition image Ips under pose
ps, our goal is to generate an output image ~Ipt , which fol-
lows the clothing appearance of Ips but under the pose pt.
This generation can be formulated as: < Ips ;pt >! ~Ipt .

During the most practical scenario, we are working
under an unpaired setting: the training set is composed
with fIi

pis
;pi

s;p
i
tgNi¼1, where the corresponding ground truth

image Iipt is not available. For this challenging problem of
unpaired person image generation, our key idea is to intro-
duce human semantic parsing to decompose it into two
modules: semantic parsing transformation and appearance gen-
eration. Fig. 1 shows our overall framework. The semantic

Fig. 1. Our overall framework for unpaired person image generation. We decompose the mapping into semantic parsing transformation (HS) and
appearance generation (HA). Note that HA consists of two streams: a foreground generative network (in grey) and a background generative network
(in orange) to render foreground and background, respectively. HS generates the semantic map ~Spt under the target pose pt, and HA further gener-
ates the output ~Ipt guided by ~Spt . Then we achieve the cycle to get the recovered input ~Ips . For simplicity, we omit some inputs of the generator. The
detailed illustration ofHS andHA can be found in Figs. 2 and 4, respectively.
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parsing transformation module aims to generate a sem-
antic map under the target pose, providing valuable prior-
knowledge for the clothing attributes and human body
shape. Guided by the condition image and the predicted
semantic map, the appearance generation module then syn-
thesizes textures for the foreground and background of the
final output, respectively.

In the following, we first introduce person representation
(Section 3.1), which is the input of our framework. We then
describe each module in detail from the perspective of inde-
pendent training (Sections 3.2 and 3.3). Finally, we illustrate
our training strategy to jointly optimize the two modules
(Section 3.4).

3.1 Person Representation

The input of our model includes the condition image Ips 2
R3�H�W , the source pose ps, and the target pose pt. Besides,
our framework also involves a semantic map Sps extracted
from Ips , pose masksMps for ps andMpt for pt. In our work,
poses are represented as probability heat maps, i.e., ps;pt 2
Rk�H�W ðk ¼ 18Þ. We extract the semantic map Sps with an
off-the-shelf human parser [11]. Sps is encoded as a pixel-

level one-hot vector, i.e., Sps 2 f0; 1gL�H�W , and L indicates
the total number of semantic labels. We adopt the same defi-
nition in [1] for the pose masks Mps and Mpt , as priors for
pose joint connection in image generation.

3.2 Semantic Parsing Transformation (HS)

In this module, we aim to predict the semantic map
~Spt 2 ½0; 1�L�H�W under the target pose pt, according to the
condition semantic map Sps . It is achieved by the semantic
generative network based on U-Net [41]. As shown in
Fig. 2, our semantic generative network consists of a seman-
tic map encoder ES , a pose encoder EP , and a semantic map
generator GS . ES takes Sps , ps, and Mps as input to extract
conditional semantic information, while EP takes pt and
Mpt as input to encode the target pose. GS then predicts ~Spt

based on the encoded features. To generate the semantic
label for each pixel, we employ softmax activation function
as [42] at the end of GS . The predicted semantic map ~Spt

conditioned on Sps and pt can be formulated as ~Spt ¼
GS ESðSps ;ps;MpsÞ; EP ðpt;MptÞ

� �
. The introduction of Mps

and Mpt as input is to help generate continuous semantic
maps, especially for bending arms.

Pseudo Label Generation. The semantic generative network
is trained to model the spatial semantic deformation under
different poses. As clothing textures are not associated with
semantic maps, people in different clothing appearances

may share similar semantic maps. Therefore, we can create
semantic map pairs from training images to facilitate model
training. For a given Sps , we search a semantic map Sp�t ,
which is under a different pose but shares the same clothing
type as Sps . Then we use p�

t as the target pose for Sps , and

regard Sp�t as the pseudo ground truth. We define a simple

yet effective metric for such a search problem. As shown in
Fig. 3, we divide the human body into ten rigid body parts
following [5], which can be represented with a set of binary

masks fBjg10j¼1ðBj 2 RH�W Þ. Sp�t is searched by solving

Sp�t ¼ argmin
Sp

1

n

Xjn

j¼j1

1

jBj
ps j

jjBj
ps
� Sps � fjðBj

p � SpÞjj22;

(1)

where fj1; . . . ; jng denote the binary mask indexes that are
valid both for Sp and Sps . � is the element-wise multiplica-
tion operator. We align the two body parts with an affine
transformation fjð�Þ, which can be calculated by minimizing
least-squares error according to four corners of correspond-
ing binary masks

min
fjð�Þ

jjfjðBj
pÞ �Bj

ps
jj22: (2)

Note that during pseudo label generation, pairs sharing
very similar poses are excluded. In practice, we randomly
choose N (N ¼ 500) images from the training set as pseudo
label candidates. Then we perform the pseudo label genera-
tion described above, and choose the pseudo label from can-
didates by solving Eq. (1). On the one hand, by randomly
choosing pseudo label candidates, we avoid the situation
that pseudo label generation finds ground-truth labels. On
the other hand, it accelerates the searching process, since it
would be very slow to match the whole training set with the
given semantic map individually.

Cross Entropy Loss. With paired data fSps ;ps; Sp�t ;p
�
t g, the

semantic generative network can be trained with supervi-
sion. The cross-entropy loss Lce

S is used to constrain pixel-
level accuracy of semantic parsing transformation, and the
human body is given more weight than the background
with the pose maskMp�t as

Lce
S ¼ �jjSp�t � logð ~Sp�t Þ � ð1þMp�t Þjj1: (3)

Adversarial Loss. The adversarial loss Ladv
S is employed

with a discriminator DS to help GS generate semantic maps
that are visually similar to realistic ones.

Fig. 2. Semantic parsing transformation module. The semantic genera-
tor HS consists of a semantic map encoder ES , a pose encoder EP , and
a semantic map generator GS , which can be formulated as
HS ¼ GS 	 ES;EPð Þ.

Fig. 3. In the process of pseudo label searching, the human bodies are
decomposed into rigid parts and aligned by affine transformations.
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Ladv
S ¼ LadvðHS;DS; Sp�t ;

~Sp�t Þ; (4)

where HS ¼ GS 	 ðES;EP Þ, LadvðG;D;X; Y Þ ¼ EX½logDðXÞÞ�þ
EY ½log ð1�DðY Þ� and Y is the output of G.

The overall losses for our semantic generative network
are as follows:

Ltotal
S ¼ Ladv

S þ �ceLce
S : (5)

3.3 Appearance Generation (HA)

In this module, we synthesize textures for the output image
~Ipt 2 R3�H�W , guided by the condition image Ips and the
predicted semantic map ~Spt from our semantic parsing
transformation module. Inspired by [43], we consider the
appearance generation for foreground ~IFpt and background
~IBpt , respectively. Then, the generation of image ~Ipt can be
factorized as

~Ipt ¼ ~IFpt �Vð ~SptÞ þ ~IBpt � ð1�Vð ~SptÞÞ; (6)

where � indicates element-wise multiplication, Vð�Þ is to
obtain the binary foreground mask with the semantic map.
Accordingly, our appearance generation module consists of
two main pieces, i.e., a foreground generative network and
a background generative network, as shown in Fig. 4.

Foreground Generation. The foreground generative net-
work comprises an appearance encoder EF

A to extract the
foreground appearance of condition image Ips , a semantic
map encoder E0

S to encode the predicted semantic map ~Spt ,
and a foreground generator GF

A. Different from the semantic
generative network, deformable skips in [5] are adopted to
better handle spatial deformation. We obtain the foreground

of the output image by ~IFpt ¼ GF
A EF

AðIps ; Sps ;psÞ;
�

E0
Sð ~Spt ;ptÞÞ.

Background Generation. To keep the background of the
input image, we adopt a basic U-Net [41] as the background
generative network, which consists of a background encoder
EB

A and a background generator GB
A. The background of the

output image is obtained by ~IBpt ¼ GB
A EB

AðIps �VðSpsÞÞ
� �

.

The generated foreground ~IFpt and background ~IBpt are then
combined to get the final output image ~Ipt with Eq. (6). We
formulate the overall appearance generation process as
HA ¼ GF

A 	 ðEF
A;E

0
SÞ

� �
 GB
A 	 EB

A

� �
.Without the supervision

from ground truth Ipt , the appearance generation module is

trained based on cycle consistency as [3], [28], in which HA

should be able to map back Ips with the generated ~Ipt and ps.
In the process of mapping back, the mapped-back image is
denoted as ~Ips , and the predicted segmentation map is repre-
sented as ~Sps .

Adversarial Loss. We first introduce the discriminator DA

to distinguish between generated and realistic images,
which leads to an adversarial loss Ladv

A

Ladv
A ¼ LadvðHA;DA; Ips ;

~IptÞ þ LadvðHA;DA; Ips ;
~IpsÞ:

(7)

Pose Loss. To generate images faithful to the target pose,
we use a pose loss Lpose

A with a pose detector P as [3]

Lpose
A ¼ jjPð~IptÞ � ptjj22 þ jjPð~IpsÞ � psjj22: (8)

Content Loss. We also employ a content loss Lcont
A to

ensure cycle consistency

Lcont
A ¼

X2

i¼0

jjaiLið~IpsÞ � LðIpsÞjj22; (9)

where LiðIÞ is the feature map of image I of the ith layer in
VGG16 model [44] pretrained on ImageNet. In practice, we
use conv1 2 and conv2 1 for i � 1 and RGB pixels for i ¼ 0.

Style Loss. Since Ips and ~Ipt are spatially misaligned, it is
challenging to transfer textures and color information cor-
rectly without any constraints. The work in [3] tackled this
issue using patch-style loss. It enforces textures around cor-
responding pose joints in Ips and ~Ipt to be similar. We argue
that patch-style loss is not powerful enough in two-folds:
(1) textures around joints would change with different
poses, (2) textures of main body parts are ignored. Another
alternative is to utilize body part masks. However, they can
not provide texture contour. To address the above issues,
we design a semantic-aware style loss to well retain the
style, thanks to the guidance provided by semantic maps.
By enforcing the style consistency among Ips , ~Ipt and

~Ips , we
define the semantic-aware style loss as

Lsty
A ¼ LstyðIps ; ~Ipt ; Sps ;

~SptÞ þ Lstyð~Ipt ; ~Ips ; ~Spt ;
~SpsÞ; (10)

where

LstyðI1; I2; S1; S2Þ

¼
XL

l¼1

jjGðLðI1Þ �ClðS1ÞÞ � GðLðI2Þ �ClðS2ÞÞÞjj22:

Gð�Þ denotes the function for Gram matrix [45], ClðSÞ
denotes the downsampled binary map from S, indicating
pixels that belong to the lth semantic label.

Face Loss. To generate more natural-looking faces, a face
loss Lface

A is added with the discriminator DF

Lface
A ¼ LadvðHA;DF ;FðIpsÞ;Fð~IptÞÞ

þ LadvðHA;DF ;FðIpsÞ;Fð~IpsÞÞ; (11)

where FðIÞ represents the face extraction guided by facial
joints. In our experiments, we perform it using a non-
parametric spatial transform network [46].

Fig. 4. Appearance generation. We consider two streams: foreground
and background generation. The appearance generator is formulated as
HA ¼ GF

A 	 ðEF
A;E

0
SÞ

� �
 GB
A 	EB

A

� �
.
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The overall losses for our appearance generative network
are as follows:

Ltotal
A ¼ Ladv

A þ �poseLpose
A þ �contLcont

A þ �styLsty
A þ Lface

A :

(12)

For now, we take an overall consideration of training for
foreground and background generation. One of the chal-
lenges is that the changes in human poses would lead to
missing regions in the background for the output image. To
generate natural images, it is expected that the background
generative network would achieve inpainting according to
the spatial context. However, the lack of supervision from
ground truth background images makes it hard for the net-
work to correctly render the missing regions, especially
when there are complex textures in the background. To
tackle this issue, we introduce an auxiliary dataset (i.e.,
Place2 [47]) to help train the background generative network.

As shown in Fig. 4, guided by the foreground mask, we
remove the corresponding regions both from the auxiliary
image and the condition image. For auxiliary images, we
train the background generative network by regressing to
the ground truth with an L2 distance [48]

Lrec
B ¼ jjIaux �GB

A EB
AðIaux �VðSpsÞÞ

� �jj22; (13)

where Iaux is the ground truth image from the auxiliary
dataset. Adversarial loss Ladv

B is also employed to make pre-
diction realistic and coherent to the context. Since there is a
domain gap between the auxiliary and condition images,
we use another discriminator DB to achieve the adversarial
learning. For a more stable training, we adopt an iterative
optimization procedure as illustrated in Algorithm 1.

Algorithm 1. Iterative Training for Appearance Generation

Input: fIips ; Si
ps
;pi

s;
~Si
pt
;pi

tgNi¼1, fIiauxgN
aux

i¼1 , number of training
iterationsK.

1: for t ¼ 1; . . . ;K do
2: sample fIips ; Si

ps
;pi

s;
~Si
pt
;pi

tg.
3: forwardHA to perform pose guided image generation.
4: updateHA by minimizing Ltotal

A .
5: updateDF ,DA by maximizing Lface

A þ Ladv
A .

6: sample fIiaux; Si
ps
g.

7: forward EB
A , G

B
A to perform image inpainting.

8: update EB
A , GB

A by minimizing aLrec
B þ bLadv

B (a ¼ 1;
b ¼ 10).

9: updateDB by maximizing Ladv
B .

10: end for
Output:HA.

Some could argue that training an independent network
for inpainting with an auxiliary dataset could be enough for
background generation. We conducted such experiments
and found that the domain gap between the auxiliary and
original datasets leads to artifacts on the generated images.
Our training scheme, however, can adapt to both domains
and generate more pleasant results.

3.4 End-to-End Training

As the contour and shape of the final generated images are
defined by human parsing, the quality of semantic map

prediction from semantic parsing transformation decides
the visual results of appearance generation. However, if the
two modules (HS and HA) are trained independently, two
reasons may cause instability.

� Searching error. As shown in Fig. 5a, the searched
semantic maps are not accurate enough. For exam-
ple, the sleeve lengths are not consistent in the
searched pairs (indicated by the white arrows).

� Parsing error. As shown in Fig. 5b, the semantic
maps extracted by the human parser are inaccurate,
because ground truth semantic labels are not avail-
able to finetune the human parser.

For refining the semantic parsing transformation mod-
ule, the overall framework in Fig. 1 is trained in an end-to-
end manner. Our training scheme is shown in Algorithm 2.

Algorithm 2. End-to-End Training for the Overall
Framework

Input:fSi
ps
;pi

s; S
i
p�
t
; ðp�

t ÞigN
�

i¼1, fIips ;pi
s;p

i
tgNi¼1.

1: Initialize the network parameters.
//Pre-trainHS

2: With fSi
ps
;pi

s; S
i
p�
t
; ðp�

t ÞigN
�

i¼1, train fHS;DSg to optimizeLtotal
S .

//TrainHA

3: With fIips ; Si
ps
;pi

s;p
i
tgNi¼1, fIiauxgN

aux

i¼1 and fHS;DSg fixed, train
fHA;DA;DF ;DBgwith the iterative optimization procedure

in Algorithm 1.
//Joint optimization

4: With EB
A and GB

A fixed, train fHS;DS;HA;DA;DFg jointly

withLtotal
A , using fIips ; Si

ps
;pi

s;p
i
tgNi¼1.

Output:HS ,HA.

4 EXPERIMENTS

We evaluate our proposed model both qualitatively and
quantitatively in this section. Moreover, we give an exten-
sive ablation study to better analyze each component of our
model. In the end, we show various applications of our pro-
posed model to inspire the fashion community.

4.1 Datasets and Settings

DeepFashion [13]. The subset of DeepFashion, i.e., In-shop
Clothes Retrieval Benchmark comprises a great number of
clothing images in different poses and appearances. The
images have a resolution of 256 � 256. To evaluate our
foreground and background generation respectively, we
adopt two settings for the DeepFashion dataset as follows.

� DeepFashion w/o b.g: In this setting, we evalu-
ate foreground generation. As paired data are not
required by our method, 37,258 images are randomly

Fig. 5. Potential errors in the searched semantic map pair that might
harm semantic parsing transformation.
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selected for training and 12,000 images for testing.
The images for testing are with easy backgrounds.

� DeepFashionw/ b.g: In this setting, we evaluate fore-
ground generation and background generation. As
DeepFashion w/o b.g., we use 37,258 images from
the DeepFashion dataset. To help background gener-
ation, we adopt the validation set from Place2 [47],
which consists of 36,500 images, as auxiliary data. We
manually select 118 images with complex back-
grounds from DeepFashion test set to evaluate the
performance.

Market-1501 [14]. The images in this dataset were cap-
tured from different viewpoints. There are 32,886 images in
total with a resolution of 128� 64. We adopt the same pro-
tocol defined in [14] to obtain data splits, and select 12,000
pairs of images for testing as [5].

Implementation Details. For the person representation, we
extract 2D poses with OpenPose [49], and obtain condition
semantic maps with a state-of-the-art human parser [11]. The
semantic labels originally defined in [11] are integrated into
ten categories (L ¼ 10), including background, face, hair,
upper clothes, pants, skirt, left/right arm, left/right leg. For
the DeepFashion dataset, we perform the joint learning on a
resolution of 128� 128 to refine semantic map prediction.
Then the predicted semantic maps are upsampled and we
train images in 256� 256 using progressive training strate-
gies introduced in [17]. ForMarket-1501, themodel is directly
trained and tested on 128� 64. In addition, as the images in
Market-1501 are in a low resolution with blurry faces, we
omit Lface

A for appearance generation on this dataset. For the
hyper-parameters, �pose, �cont are set as 700, 0.03 for DeepFa-
shion and 1, 0.003 for Market-1501, respectively. �sty is 1 for
all experiments. ADAM optimizer [50] is employed to train
the network with a learning rate 0.0002 (b1 ¼ 0:5 and
b2 ¼ 0:999). The batch size is set as 4 for DeepFashion and 16
for Market-1501, respectively. We use four P40 GPUs to train
our model. For training images in the resolution of
128� 128 ð256� 256Þ, it costs about 1 h�2 h (5 h�6 h) on
each epoch. In total, we spent 5 days training DeepFashion
and less than one day trainingMarket-1501.

4.2 Comparison With State-of-the-Art Methods

In this subsection, we compare our model with four state-
of-the-art methods: PG2 [1], Def-GAN [5], UPIS [3], and
V-UNet [4].1 PG2 [1] and Def-GAN [5] require paired train-
ing data, while UPIS [3] and V-UNet [4] do not. Note that
for a fair comparison, we test images from DeepFashion
with easy backgrounds (DeepFashion w/o b.g.) and com-
plex backgrounds (DeepFashion w/ b.g.), respectively. For
Market-1501, the backgrounds are cluttered and blurry,
explicit background generation is not performed.

Qualitative Comparison. In Figs. 6 and 7, we present the
qualitative comparison on the DeepFashion dataset. Our
model generates more photo-realistic results with fewer arti-
facts and higher visual quality. Fig. 6 shows the results con-
ditioned on the images with easy backgrounds to give a
comparison in the foreground generation. Our method is

superior especially in keeping the clothing attributes, includ-
ing textures and clothing type (the last row). Fig. 7 shows the
results that conditioned on the imageswith diverse and com-
plex backgrounds. The overlook of background generation
in state-of-the-art methods [1], [3], [4], [5] leads to blurry
backgrounds with many texture details missing. In contrast,
our model not only generates pleasing foregrounds, but also
keeps the backgrounds from the condition images. The
results also demonstrate that our model is able to inpaint
missing background regions caused by pose changes with
context-aware textures.Fig. 8 shows the qualitative results
on the Market-1501 dataset. It can be seen that our method
better shapes the legs and arms. Even without using back-
ground generative network to explicitly reconstruct back-
grounds, our model also successfully retains background
information from condition images.

Quantitative Results. Table 1 shows the quantitative eval-
uation in the metrics of Inception Score (IS) [51], Structural
SIMilarity (SSIM) [52] and Fr�echet Inception Distance
(FID) [53]. When computing IS and SSIM for Market-1501,

Fig. 6. Example results of images for DeepFashion (w/o b.g.) by different
methods (PG2 [1], Def-GAN [5], UPIS [3], and V-UNet [4]). Our model
better keeps clothing attributes (e.g., textures, clothing types).

Fig. 7. Example results of images for DeepFashion (w/ b.g.) by different
methods (PG2 [1], Def-GAN [5], UPIS [3], and V-UNet [4]). Our model
is able to retain the backgrounds from condition images and generate
natural results.

1. The results for PG2, Def-GAN and VUNet are obtained by public
models released by their authors, and UPIS are based on our
implementation
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we also employ mask-IS and mask-SSIM as [1] to exclude
the background area, since there is a large difference
between the backgrounds of condition and target images.
Besides, the requirements of training data are marked for
each method in Table 1 for a fair comparison.

In all the settings, our proposed model achieves the best
IS and FID, even compared with supervised methods. It is
consistent with better body shapes and more realistic details
in our results. For SSIM score, our results are slightly lower
than other methods in DeepFashion (w/o background) and
Market-1501, and comparable with state-of-the-art methods
in DeepFashion (w/ background). It can be explained by
the fact that blurry images always get higher SSIM but being
less photo-realistic, as also observed in [1], [8], [54], [55].

User Study. To give a more comprehensive comparison,
we further implement a user study to evaluate our pose-
guided person image generation results compared with
other state-of-the-arts. For each dataset, we perform pair-
wise A/B tests to 35 volunteers, and everyone is given 250
pairs that are randomly selected from the results. In each
pair, the images are in random order, one of which is our
result while the other is from the compared method. Volun-
teers are asked to select the better one without time limit,
considering: (1) correctly change the pose of the person in

the condition images, (2) correctly preserve the clothing
attributes (e.g., textures, colors, clothing types) from the
condition images to the target images, (3) correctly retain
the background information from the condition images, (4)
natural and photo-realistic visual quality.

Table 2 shows our user-study results for mean and vari-
ance values. The mean values indicate the percentages of
volunteers that select our method as better results in pair-
wise comparisons. For example, about 92.20 percent volun-
teers think our method generates better images than
PG2 [1]. The variance values indicate how volunteers think
differently for the given pairs. The results in Table 2 illus-
trate that our method effectively generates images with
more pleasant visual quality than state-of-the-art methods.

4.3 Ablation Study

In this subsection, we first evaluate the introduction of
semantic parsing, then elaborate on the effectiveness of each
component in semantic parsing transformation and appear-
ance generation to better understand our model.

To evaluate the introduction of semantic information in
unpaired person image generation, we design the following
experiments with different configurations.

� Baseline: The architecture of our baseline model is
the same as the appearance generation module. It
directly learns the mapping between input and out-
put images without the introduction of semantic
information. Mask-style loss, which employs body
part masks instead of semantic maps in Eq. (10), is
used to keep the style on the final result.

� TS-Pred: We train the semantic parsing transforma-
tion and appearance generation independently in
two-stage. The predicted semantic maps are fed into

Fig. 8. Example results by different methods (PG2 [1], Def-GAN [5],
UPIS [3], and V-UNet [4]) on Market-1501. Our model generates better
body shapes.

TABLE 1
Quantitative Results on DeepFashion and Market-1501 Datasets (*Based on Our Implementation)

DeepFashion (w/o b.g.) DeepFashion (w/ b.g.) Market-1501

Models Paired data IS " SSIM " FID # IS " SSIM " FID # IS " SSIM " mask-IS " mask-SSIM " FID #
PG2 [1] Y 3.090 0.762 47.621 2.286 0.651 78.967 3.460 0.253 3.435 0.792 142.731
Def-GAN [5] Y 3.439 0.756 18.672 2.191 0.693 55.752 3.185 0.290 3.502 0.805 78.305
V-Unet [4] N 3.087 0.786 26.043 2.513 0.637 61.470 3.214 0.353 – – 211.710
UPIS [3] N 2.971 0.747 23.364 2.162 0.566 63.529 3.431* 0.151* 3.485* 0.742* 70.008
Ours N 3.441 0.736 12.225 2.633 0.699 55.259 3.499 0.203 3.680 0.758 56.442

TABLE 2
User Study Results on Pose-Guided Person Image Generation

Deep Fashion
(w/o b.g.)

Deep Fashion
(w/ b.g.)

Market-1501

mean var mean var mean var

PG2 [1] 92.20% 0.007 95.83% 0.004 78.55% 0.019

Def-GAN [5] 64.61% 0.036 67.13% 0.031 67.23% 0.022

UPIS [3] 97.90% 0.001 97.92% 0.001 86.17% 0.012

V-UNet [4] 68.55% 0.007 70.70% 0.030 73.31% 0.046

The mean values indicate the percentages of volunteers that select our method
as better results in pairwise comparisons.
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the appearance generation module to generate the
final results.

� TS-GT: We train the semantic parsing transformation
and appearance generation independently in two-
stage. The semantic maps extracted from target
images are regarded as ground truth semantic labels,
and then fed into the appearance generation module
to generate the final result.

� E2E (Ours): The overall framework is optimized
jointly by end-to-end training.

We show the intermediate semantic maps and corre-
sponding generated images in Fig. 9. It is difficult for the
network to handle the appearance and shape simulta-
neously without the guidance from semantic maps. How-
ever, the results with semantic parsing transformation

outperform the baseline consistently. It is observed that
the image quality drops directly due to the errors in the
predicted semantic maps when trained in two-stage, but
the semantic map prediction can be refined in end-to-end
training. For instance, our model is able to well preserve
the haircut and sleeves length in Fig. 9a. We further pres-
ent the quantitative results of different configurations in
Table 3. For DeepFashion, we obtain comparable IS,
SSIM, and FID scores in end-to-end training strategy
(E2E) with those using ground truth semantic maps (TS-
GT). For Market-1501, we obtain even better results from
E2E than TS-GT, mainly because the human parser [11]
does not work well on low-resolution images and there
are many errors in the parsing results, as the first row
in Fig. 9b.

Fig. 9. Ablation studies on semantic parsing transformation.
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4.3.1 Analysis of Semantic Parsing Transformation

We now give more detailed analysis of semantic parsing
transformation. The experiments are conducted with the
semantic generative network trained in two-stage.We explore
the effectiveness of person representation and loss functions.

� Person Representation. We first investigate the effective-
ness of person representation in semantic parsing transfor-
mation. It is found that pose masks play a key role in
generating a smooth and natural semantic map under the
target pose. As shown in Fig. 10a, after removing pose
masks from the input, the semantic generative network
tends to generate breaking limbs (arms in the 1st and 3rd
rows) or unnatural body shapes (arm in the 2nd row). We
also explore the effect of pose heat maps by removing them
from the input and keeping pose masks. The results can be
viewed in Fig. 10b. Without pose heat maps, though pose
masks have provided joint positions implicitly, the model
fails to generate natural results, due to the lack of semantic
information represented through different channels in the
pose heat maps. However, together with the joint connec-
tion prior from pose masks and explicit semantic informa-
tion from pose heat maps, we obtain continuous and
natural semantic maps (see Ours in Fig. 10).

� Pseudo Label Generation. With our pseudo label genera-
tion strategy, we explore if any semantic maps find their
ground-truths as pseudo labels, and show how it affects the
semantic parsing transformation performance. We experi-
ment with different NðN ¼ 100; 500; 1000Þ, which is the
number of candidate images, to obtain different sets and
train the semantic generator. We first calculate how many
semantic maps find their ground-truths. The results in the

second column of Table 4 show that there are only 0.09-0.37
percent of the data finding their ground-truths as pseudo
labels in the training set. We then further evaluate the
semantic parsing transformation performance. Table 4 illus-
trates there is no significant difference in semantic transfor-
mation performance with different N , though they are
inferior to that trained with ground-truth semantic labels
(the last row). However, it is not necessary for our model to
generate semantic maps as accurate as possible, because our
end-to-end training strategy is able to refine the predicted
semantic maps, as analyzed in Fig. 9. In our experiments,
we setN as 500.

� Loss Functions. In semantic parsing transformation, we
mainly explore the effectiveness of adversarial loss and its
parameter setting.

Effectiveness of Adversarial Loss Ladv
S . In the loss function

(Eq. (5)) for semantic parsing transformation, Lce
S is dispens-

able, because it provides straightforward supervision for
the semantic generator to learn the transformation between
different poses. But when trained only with Lce

S , the network
would overlook the human body structure and generate
unrealistic results, as shown in Fig. 10c. However, the intro-
duction of Ladv

S helps generate high-quality and realistic
semantic maps (see Ours in Fig. 10).

Parameter Setting . We further explore the influence of �ce

in Eq. (5). To evaluate different �ce, we randomly select
1,000 samples, then calculate accuracy and mIoU with the
predicted and ground truth semantic maps. The results are
shown in Fig. 11. When �ce is too small (i.e., �ce ¼ 10�1), the
semantic generative network is not powerful enough to
learn the transformation between different poses. With a
larger �ce, the accuracy and mIoU improve accordingly, and
the network converges more quickly. However, when
�ce ¼ 103, the weaker constraints by Ladv

S lead to degrada-
tion in generating accurate semantic maps. Note that the
results in Fig. 11 are just indicative to help us generate rea-
sonable semantic maps more efficiently. On the one hand,
ground truth semantic labels are not available to fine-tune
the human parser [11], so there are errors in ground truth
semantic maps, which could influence the results of

TABLE 3
Quantitative Results Under Different Configurations on DeepFashion (w/o b.g.) and Market-1501 Datasets

DeepFashion Market-1501

Models IS " SSIM " FID # IS " SSIM " mask-IS" mask-SSIM " FID #
Baseline 3.140 0.698 15.443 2.776 0.157 2.814 0.714 75.436
TS-Pred 3.201 0.724 13.881 3.462 0.180 3.546 0.740 66.858
TS-GT 3.350 0.740 12.386 3.472 0.200 3.675 0.749 58.877
E2E 3.441 0.736 12.225 3.499 0.203 3.680 0.758 56.442

Fig. 10. Analysis of semantic parsing transformation. (a) Remove pose
masks from the input. (b) Remove pose heat maps from the input. (c)
Remove Ladv

S in Eq. (5). The results of the semantic maps generated by
our semantic generative network are in the right.

TABLE 4
Analysis of Pseudo Label Generation

N Ground-Truth (%) Accuracy (%) mIoU

100 0.09 73.57 0.476
500 0.29 75.01 0.473
1000 0.37 74.56 0.474

Ground-Truth – 76.66 0.495
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accuracy and mIoU. On the other hand, we do not have to
get predicted semantic maps the same with the ground
truths. In our experiments, we set �ce as 102.

4.3.2 Analysis of Appearance Generation

To analyze the appearance generation module, we show an
ablation study for foreground generation and background
generation, respectively.

� Foreground Generation. We first explore the effective-
ness of different loss terms for foreground generation, and
then analyze the effects of coarser semantic maps on gener-
ated foregrounds. Note that to avoid the influence of seman-
tic map prediction, we conduct experiments with TS-GT
model when evaluating Lsty

A and Lface
A .

Effectiveness of Style Loss Lsty
A . In Fig. 12a, the semantic-

aware style loss Lsty
A is replaced with a mask-style loss,

which refers to replace semantic maps in Eq. (10) with
binary masks as Fig. 3. The rectangular masks estimated
from body joints are not able to locate body parts accurately,
leading to dizzy contour in the generated images. In
Fig. 12b, the semantic-aware style loss Lsty

A is replaced with
the patch-style loss defined by [1]. It only enforces the tex-
tures around corresponding pose joints similar, overlooking
those of main body parts. Thanks to our semantic-aware
style loss, our network is able to transfer the textures from
corresponding semantic regions accurately.

Effectiveness of Face Loss Lface
A . Without the constraints by

the face discriminator, the network is difficult to handle

facial structures and generate natural faces, which can be
verified in Fig. 12c. However, our results with Lface

A show
that face loss effectively helps generate realistic-looking
faces, and further present more pleasing visual quality of
output images.

Effectiveness of Losses on ~Ips . In our work, the loss penalizes
style and adversary for the recovered image ~Ips , even though
it could be directly compared with the condition image Ips .
In Fig. 13, we give an ablation study to confirm the impact of
losses on the recovered image ~Ips . We denote the style loss
on the recovered image as L0

sty and adversarial loss as L0
adv.

The two losses do not have much impact on the final results
in TS-GT (1st row). But the absence of adversarial loss leads
to degradation on the recovered image (2nd row). It further
results in unstable end-to-end training (3rd row).

Effects on Coarser Semantic Maps.We investigate the effects
of semantic maps for appearance generation. We conduct
experiments with semantic maps under different qualities,
by downsampling with different scales. The results can be
seen in Fig. 14. Our appearance generation module is able to
handle minor errors in the semantic maps when down-
sampled 2 or 4 times. The coarser semantic maps with 8 or 16
times downsampling lead to unrealistic results, largely due
to unrealistic shape prior in the semanticmaps.

� Background Generation.We further analyze the effective-
ness of our background generative network and compare
different background generation schemes in Figs. 15 and 16,
respectively.

Effectiveness of Our Background Generative Network. With-
out explicitly rendering background as our conference

Fig. 11. Results of predicted semantic maps in terms of accuracy and
mIoU with different �ce.

Fig. 12. Analysis of style loss Lsty
A and face loss Lface

A in appearance gen-
eration. (a) Lsty

A is replaced with mask-style loss. (b) Lsty
A is replaced with

patch-style loss. (c) Without Lface
A . The results of TS-GT with full losses

are shown in the right.

Fig. 13. Analysis of the losses on ~Ips in appearance generation. (a) w/o
L0
sty, (b) w/o L0

adv, (c) w/o L0
sty and L0

adv. The results of our full losses are
in the right.

Fig. 14. Results with semantic maps in different qualities.
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version [12], the model generates background according to
the distribution of training dataset, ignoring the background
condition in the input image. The results can be seen in
Fig. 15a. A straightforward strategy for background genera-
tion is to use an inpainting method. We use PatchMatch [56]
as a background generation baseline, and the results are
shown in Fig. 15b. We observed PatchMatch sometimes
fails [56] (see the holes in Fig. 15b) because the large hole
makes it hard to find an optimal matched patch in the visi-
ble region. We also train a background generative net-
work [57] independently with human-shape masks on
auxiliary data and the results are in Fig. 15c. There are
always artifacts in the generated backgrounds. It is because
the images in auxiliary data are cluttered, while the back-
grounds in original images are clean and structured. The
domain gap between auxiliary data and original images
leads to degradation in the inpainted backgrounds. In this
work, we train the auxiliary and original images jointly for
background generation. The results are in the right of
Fig. 15. We further conduct an experiment that jointly trains

the background and foreground networks without auxiliary
data. The results in Fig. 15d illustrate it is difficult for the
network to predict missing regions with coherent textures.

Comparison With Different Background Generation Methods.
In Fig. 16, we compare more results based on different
inpainting methods, including PatchMatch [56], context-
encoders [57], gated-convolution based inpainting net-
work [58], and partial-convolution based inpainting net-
work [59]. Results show that PatchMatch [56] fails to fill the
holes as illustrated above. For the deep network based
methods [57], [58], [59], the works in [58], [59] are better at
generating coherent textures and seamlessly rendering the
boundary for the inpainted regions compared to context-
encoders [57]. However, we still observe similar degraded
results in the backgrounds due to the domain gap between
the auxiliary and original images (see the 1st-3rd rows in
Fig. 16). Our training scheme, however, inpaints the back-
ground successfully and smoothly. We also show a failure
case in Fig. 16 (the last row), that [58], [59] achieve more sat-
isfactory results. We argue that our result can be further
improved with a stronger backbone for the background
generative network with our iterative training strategy.

In-the-Wild Results. To further evaluate our background
generative network, we apply our model on more general
images from the Posewarp dataset [7] with more complex
backgrounds. The images are shown in Fig. 17. Compared
with other state-of-the-art inpainting methods ([56], [57],
[58], [59]), the results suggest the superiority of our model,
not only generating realistic foreground but also smooth
background.

4.4 Applications

The pose-guided generation results indicate that our model
essentially learns the mapping between corresponding
semantic regions. It inspires us to apply our model on some
semantic-aware image generation tasks. To demonstrate the
versatility of our model, we show some interesting applica-
tions in the following.

� Clothing Texture Transfer. Clothing textures can be trans-
ferred from the condition image to the target image with
their semantic maps. Fig. 18 presents the bidirectional trans-
fer results. Compared to image analogy [60] and neural doo-
dle [61], our model not only preserves and transfers
textures, but also automatically generates photo-realistic
faces.

� Controlled Image Manipulation. We are able to manipu-
late image generation by editing the semantic maps into the
desired layouts. In the top of Fig. 19, we edit the sleeve
lengths, and in the bottom we change the dress to pants.
Compared to image analogy [60] and neural doodle [61],

Fig. 15. Analysis of the proposed background generative network and
our iterative training strategy. (a) W/o background generative net-
work [12]. (b) Baseline results for background generation with Patch-
Match [56] for background generation. (c) Training an independent
inpainting network [57] using auxiliary data. (d) Training the proposed
model without auxiliary data. Our final results are in the right.

Fig. 16. Comparison with different background generation methods,
including PatchMatch [56], context-encoders [57], gated-convolution
based inpainting network [58], and partial-convolution based inpainting
network [59]. Our results are in the right. We show a failure case in the
last row which can be improved with a stronger backbone for the back-
ground generative network.

Fig. 17. In-the-wild results. We try images from the Posewarp
dataset [7].
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our model changes the appearance of the given image suc-
cessfully according to the desired layout.

� Virtual Try-On. By feeding the product image into the
appearance encoder and the semantic map of the clothed
person into the semantic encoder, our appearance genera-
tion module is also applicable for the task of virtual try-on.
In Fig. 21a, our model synthesizes photo-realistic new
images and overlays the product image seamlessly onto the
corresponding region of the clothed person. We also try to
transfer the styled images on the clothing. The results can
be seen in Fig. 21b.

Implementation Details. All the applications above are
based on the foreground generative network in the appear-
ance generation module, which is trained on the DeepFa-
shion dataset [13] for our unpaired pose-guided image
generation. No additional training on product images is
required. For clothing texture transfer and controlled image
manipulation, we feed the corresponding inputs to the fore-
ground generator in Fig. 4. For virtual try-on, we need to
define the inputs for clothing/styled images to adapt to the

foreground generator. Taking try-on with clothing as an
example, Fig. 20 shows our detailed implementation. We
need to provide the coordinates of the clothing landmarks pc,
including left/right collar , left/right elbow , left/right sleeve end ,

and left/right hem . Besides, the inputs for EF
A include the

clothing image Ic and its semantic map Sc. Note that the
semantic label for the clothing image is the same as the try-on
region in the condition image It. The inputs for E0

S include
the pose map pt and the semantic map St from It. If the cloth-
ing attributes of Ic and It are inconsistent (i.e., Ic has short
sleeves while It has longer ones), we need tomanipulate St to
the desired layout as controlled image manipulation. Then
we have I 0out ¼ GF

A EF
Aðpc; Sc; IcÞ; E0

Sðpt; StÞ
� �

. In virtual try-
on, it is usually important to keep the identity of the target
person. In our implementation, we generate a binary mask
Mf from St for the try-on region. To keep the original face, we
have Iout ¼ I 0out �Mf þ It �Mb, where Mb ¼ 1�Mf . Simi-
larly, for try-onwith styled images, we need to define the cor-
ners of the styled images as pc and generate a semantic map
as Sc, so the model can map the styled textures on the condi-
tion image correspondingly.

4.5 Failure Cases and Open Issue Discussion

Although our model generates impressive results, we also
observe some failure cases as shown in Fig. 22. In the condi-
tion semantic map of the first example, the human parser
incorrectly parses the sleeves as arms. Such error makes the
semantic generative network unable to predict the semantic
map properly. In the second example, the generated

Fig. 18. Application for clothing texture transfer. Left: condition and tar-
get images. Middle: transfer from A to B. Right: transfer from B to A. We
compare our results with image analogy [60] and neural doodle [61].

Fig. 19. Application for controlled image manipulation. By manually edit-
ing the semantic maps, we can generate images in the desired layout.

Fig. 21. Application for virtual try-on. Our model can synthesize clothing
or styled images seamlessly on the condition images.

Fig. 20. Implementation details for try-on with clothing.
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semantic map is less satisfactory because the transformation
to a rare pose is very complex, leading to less realistic gener-
ated images. However, with ground truth semantic maps,
we still obtain pleasing results from our model. These fail-
ure cases can be possibly solved by user interaction.

Based on the above failure cases and previous related
works, we further discuss some open issues to inspire future
work in this problem. First, though human semantic parsing
provides crucial guidance for person image generation, the
model can be vulnerable to parsing errors. Thus, a crucial
component is improving robustness to semantic parsing, for
instance, by jointly training the human parser and person
image generation model. Second, the model does not work
well with large pose changes, such as rare poses, or poses at
different scales. Data augmentation could be an easy solu-
tion. It can also be regarded as a domain adaptation problem
and new models are desirable. In the end, retaining back-
ground is a step toward generating temporally-smooth vid-
eos. Incorporatingmore spatial and temporal context may be
important for pose-guided video generation.

5 CONCLUSION

In this paper, we propose a model for unpaired person image
generation. To handle the complexity of learning a direct
mapping between different poses, the hard problem is
decomposed into semantic parsing transformation and
appearance generation. A semantic generative network first
predicts the semantic map of the desired pose explicitly.
Then the appearance generationmodule respectively synthe-
sizes the foreground and background, in which the fore-
ground generative network renders semantic-aware textures,
while the background generative network aims to retain the
background from the condition image. To overcome the
absence of ground truth images, we propose an iterative opti-
mization procedure to train the appearance module, so that
the background generative network can predict missing
regions caused by pose changes. Besides, end-to-end training
of the overall pipeline enables better prediction for semantic
maps and further final results. Our model is also versatile on
some interesting image generation applications, including
clothing texture transfer, controlled imagemanipulation, and
virtual try-on. However, our model may fail when there are
errors in the condition semantic map. Finally, we discuss
some open issues and possible future work in this problem.
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